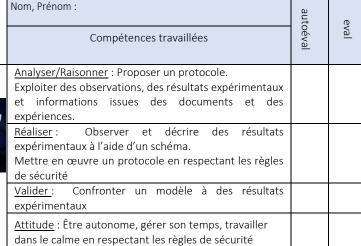


TP: La chimie, ça gonfle ... plus ou moins!

DESCRIPTIF DE L'ACTIVITÉ


Objectifs	 A partir de données expérimentales, établir et ajuster une équation de réaction Déterminer le réactif limitant lors d'une transformation chimique totale, à partir de l'identification des espèces chimiques présentes dans l'état final 			
Niveau concerné	Seconde			
	Notion et contenus	Capacités exigibles Activités expérimentales support		
Programme	Modélisation macroscopique d'une transformation par une réaction chimique Ecriture symbolique d'une réaction chimique. Stœchiométrie, réactif limitant	Modéliser, à partir de données expérimentales, une transformation par une réaction, établir l'équation de réaction associées et l'ajuster. Déterminer le réactif limitant lors d'une transformation chimique totale, à partir de l'identification des espèces chimiques présentes dans l'état final		
		Modéliser, par l'écriture d'une équation de réaction, l'action d'un acide sur le calcaire		
Place de l'activité dans la progression et pré-requis		nations chimiques: conservation de la masse, l'équation chimique, réactifs, produits		
Compétences évaluées	Cette activité expérimentale permet d'évaluer les compétences • Analyser (ANA) Proposer un protocole. Exploiter des observations, des résultats expérimentaux et informations issues des documents et des expériences. • Réaliser (REA) Observer et décrire des résultats expérimentaux à l'aide d'un schéma Mettre en œuvre un protocole en respectant les règles de sécurité • Valider (VAL) Confronter un modèle à des résultats expérimentaux • Attitude (ATT) Être autonome, gérer son temps, travailler dans le calme en respectant les règles de			
Eléments d'évaluation	Evaluation sommative			
Mise en œuvre de l'activité	Activité préparatoire à faire en amont à la maison : Regarder une vidéo qui résume tout ce qu'il faut savoir sur les transformations chimiques et comment équilibrer une équation avec un exercice en ligne pour s'entraîner (voir annexe) 1 Séance d'1h30 de TP en binôme			
Outils numériques utilisés	Aucun			
Remarques				
Auteur(s)	Solène Valla et Emmanuelle Forns			

L'ACTIVITÉ

La chimie, ça gonfle... plus ou moins!

Objectifs:

- A partir de données expérimentales, établir et ajuster une équation de réaction
- Déterminer le réactif limitant lors d'une transformation chimique totale, à
 - partir de l'identification des espèces chimiques présentes dans l'état final

CONTEXTE

Pendant le confinement, Robin décide d'occuper son petit frère Télio et lui lance un défi en s'inspirant de ses personnages préférés :

QUESTION

→ Serez-vous capable de trouver les justes proportions d'acide pour que l'expérience fonctionne à tous les coups et pour ne pas faire de gaspilllage ?

DOCUMENTS

Document 1: Système chimique et transformation chimique

Un **système chimique** est un mélange d'espèces chimiques susceptibles de réagir entre elles. Il est caractérisé par sa température T, sa pression P, la nature et l'état des espèces chimiques : (s) pour l'état solide, (ℓ) pour l'état liquide, (g) pour l'état gazeux et (aq) pour une espèce dissoute (ou soluté) en solution aqueuse.

Une **transformation chimique** a lieu quand un système chimique évolue d'un état initial à un état final. On appelle **réactif** une espèce qui disparait au cours de la transformation, et **produit** une espèce qui apparait.

La réaction chimique modélise le passage des réactifs aux produits.

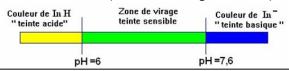
Elle est symbolisée par une **équation de réaction** : **Réactifs** \rightarrow **Produits**

Cette écriture doit respecter les lois de la conservation (éléments, charges).

Pour une réaction totale, la transformation cesse quand l'un des réactifs a totalement disparu : ce réactif est dit **réactif limitant** (l'autre est en excès).

Une espèce chimique présente dans le système chimique à l'état initial et à l'état final, et qui ne réagit pas est appelée **espèce spectatrice**. Elle n'apparaît pas dans l'écriture de l'équation de réaction.

Document 2 : Les espèces de la transformation chimique étudiée


Nom commun	Bicarbonate de soude	
Nom chimique	Hydrogénocarbonate de sodium	Acide chlorhydrique
Formule chimique	$NaHCO_{3(s)}$	$H_{(aq)}^{+} + Cl_{(aq)}^{+}$

La masse molaire de l'hydrogénocarbonate de sodium est M(NaHCO₃) = 84 g.mol⁻¹

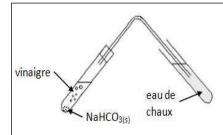
Ces 2 substances réagissent ensemble et produisent un dégagement gazeux (à déterminer). Parmi les produits de la réaction, on trouve de l'eau $H_2O_{(l)}$ et des ions spectateurs $Na_{(aq)}^+$

Document 3 : Bleu de bromothymol (BBT) : un indicateur coloré acido-basique

Le caractère acide ou basique d'une solution peut être déterminé par mesure de pH avec un indicateur coloré (ou un papier pH ou un pH-mètre). Le BBT est un indicateur coloré couramment utilisé : il est **jaune** dans une solution acide (en présence d'ions $H^+_{(ac)}$) et **bleu** dans les autres cas (la zone de virage est verte).

TRAVAIL A EFFECTUER

1. Etude qualitative préalable


1)	En lisant les documents mis à votre disposition, proposer une expérience permettant de vérifier que l'acide
	chlorhydrique contient des ions hydrogène $H^+_{(aq)}$
Арр	eler le professeur pour vérifier

Niveau	Α	В	С	D]

Proposer un protocole			
mettre en œuvre et noter vos observations (en vous appuya	-		
 	 	•••••	

Niveau		Α	В	С	D
REALISER	Observer et décrire des résultats expérimentaux à l'aide d'un				
	schéma				

🦈 Afin d'identifier la nature du gaz qui se libère lors de l'expérience, mettre en œuvre l'expérience suivante :

Dans un tube à essai, placer une pointe de spatule d'hydrogénocarbonate de sodium.

Dans un deuxième tube à essai, verser de l'eau de chaux (en quantité suffisante pour que l'extrémité d'un tube à dégagement y soit immergée).

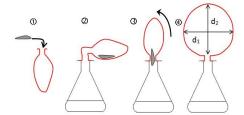
Dans le tube contenant l'hydrogénocarbonate de sodium, verser environ 2 mL d'acide chlorhydrique et fixer le bouchon de façon à ce que le gaz formé arrive dans l'eau de chaux (faire barboter le gaz formé dans de l'eau de chaux).

2)	Noter vos observations et conclure quant à la nature du gaz formé (écrire sa formule chimique)	
		•

3) En vous appuyant sur vos expériences et sur le document 2, faire l'inventaire des réactifs et des produits et en déduire l'équation de la réaction

Réactifs	Produits

Equation de la réaction		


2. Etude quantitative

<u>Document 4</u>: Protocole expérimental <u>à lire intégralement avant de commencer</u>

- A l'aide d'une éprouvette graduée, verser dans **une fiole** un volume 20 mL d'acide (cela correspond à 3×10^{-2} mol d'acide). Y ajouter 5 gouttes de BBT.
- Observer la couleur
- Dans une coupelle verser la masse l'hydrogénocarbonate indiqué pour le système n°1

n° de système	1	2	3
Masse hydrogénocarbonate (g)	1,0	2,5	4,0

- L'introduire dans le ballon de baudruche avec l'entonnoir.
- Sans faire tomber la poudre, adapter le ballon sur la fiole.
- Faire tomber **la totalité de la poudre** du ballon dans la fiole. <u>Bien tenir le ballon au niveau du col</u>, sinon il se décrochera!
- Agiter doucement jusqu'à ce que l'effervescence s'arrête.
- Répondre à la question 4) en complétant le tableau
- Refaire la même manipulation avec les systèmes 2 et 3 (seule la masse change).

- 4) Pour chacune des 3 expériences, compléter le tableau ci-dessous :
- noter la couleur de la solution finale dans la fiole ;
- noter la présence ou l'absence de poudre dans la fiole
- noter la quantité de gaz produite (faible, moyenne, importante)
- Calculer la quantité de matière d'hydrogénocarbonate ajouté (Rappel : $n=rac{m}{M}$).

		couleur de la solution finale	Présence de réactif NaHCO _{3(s)}	Quantité de gaz produit	Quantité de matière d'hydrogénocarbonate ajouté
	1 ^{ère} expérience				
Quantités (g ou mL)	2 ^{ème} expérience				
	3 ^{ème} expérience				

	Niveau		В	С	D
REALISER	Mettre en œuvre un protocole				
ATTITUDE	Travailler dans le calme en respectant les règles de sécurité				

- 5) Pour chacune des 3 expériences, et en utilisant les résultats du tableau précédent, compléter le tableau cidessous en précisant :
- Les réactifs introduits et leur quantité de matière respective
- Déduire de la couleur de la solution le réactif restant et le réactif limitant s'il y a en a un

		Réactifs			Réactif restant	Réactif limitant	
		Formule chimique	Quantité de matière	Formule chimique	Quantité de matière		
Quantités (g ou mL)	1 ^{ère} expérience						
	2 ^{ème} expérience						
	3 ^{ème} expérience						

- 6) Pour chacune des phrases suivantes choisir les bonnes réponses dans les phrases suivantes :
- a) La transformation chimique s'est arrêtée lorsque l'un des réactifs / produits a été entièrement consommé.
- Pour l'expérience n°1 :
 - b) les ions H⁺_(aq) / le NaHCO_{3(s)} a disparu en premier <u>OU</u> les <u>2 réactifs</u> ont complètement disparu. C'est donc H⁺_(aq) / NaHCO_{3(s)} le réactif limitant <u>OU</u> les 2 réactifs sont limitants.
- Pour l'expérience n°2 :
 - c) les ions H⁺_(aq) / le NaHCO_{3(s)} a disparu en premier <u>OU</u> les <u>2 réactifs</u> ont complètement disparu.
 C'est donc H⁺_(aq) / NaHCO_{3(s)} le réactif limitant <u>OU</u> les 2 réactifs sont limitants.
- Pour l'expérience n°3 :
 - d) les ions H⁺_(aq) / le NaHCO_{3(s)} a disparu en premier <u>OU</u> les <u>2 réactifs</u> ont complètement disparu.
 C'est donc H⁺_(aq) / NaHCO_{3(s)} le réactif limitant <u>OU</u> les 2 réactifs sont limitants.
 - e) Le volume de gaz produit augmente car la quantité initiale **d'ions** $H^+_{(aq)}$ / **de poudre NaHCO**_{3(s)} introduite est de plus en plus grande, alors que la quantité initiale **d'ions** $H^+_{(aq)}$ / **de poudre NaHCO**_{3(s)} ne change pas
 - f) Si on multipliait les expériences en augmentant encore la masse, le volume de gaz serait constant car c'est la quantité initiale **d'ions** H⁺_(aq) / **de poudre NaHCO**_{3(s)} qui limite la réaction.

Niveau			В	С	D
VALIDER	Confronter un modèle à des résultats expérimentaux				

ACTIVITÉ PREPARATOIRE

Pour bien commencer, faire le QCM « Qu'avez-vous retenu du collège sur les transformations chimiques ? » du plan de travail chapitre 8

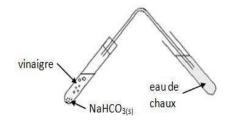
Notions du collège :

Transformations chimiques : conservation de la masse, redistribution d'aomes, notion d'équation chimique, réactions entre espèces acides et basiques en solution, réactions d'une espèce acide sur un métal, mesure de pH

Réactiver ses connaissances avec le Quizz

Si tout n'est pas très clair, regarder cette vidéo de 3'53 qui résume tout ce qu'il faut savoir sur les transformations chimiques

Dans ce chapitre, il sera surtout très important de savoir équilibrer une équation chimique, regarder cette vidéo de 5'56



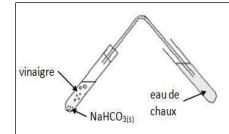
Et pour s'entraîner à équilibrer :

MATERIEL

- 2 tubes à essais
- BBT
- Acide chlorhydrique 1 mol/L
- Hydrogénocarbonate de sodium (1 pot de yaourt par binôme)
- Spatule
- Balance + coupelle plastique
- Fiole jaugée de 50 mL
- Ballon de baudruche
- Eprouvette graduée
- 2 tubes à essais dont un rempli d'eau de chaux et bouchon avec tube à dégagement

CORRECTION

3. Etude qualitative préalable


- 1) En lisant les documents mis à votre disposition, proposer une expérience permettant de vérifier que l'acide chlorhydrique contient des ions hydrogène $H_{(aa)}^+$
- Appeler le professeur pour vérifier

Le BBT est un indicateur coloré couramment utilisé : il est **jaune** dans une solution acide (en présence d'ions H⁺_(aq)) et **bleu** dans les autres cas (la zone de virage est verte).

On place donc de l'acide dans un tube à essai et on ajoute quelques gouttes d'indicateur coloré : s'il est jaune, cela permet de vérifier qu'il contient des ions hydrogène $H^+_{(aq)}$

 $^{\circ}$ Après validation, mettre en œuvre et noter vos observations (en vous appuyant sur un schéma) Le BBT devient jaune dans l'acide : il est acide donc contient des ions hydrogène $H_{(ag)}^+$

Afin d'identifier la nature du gaz qui se libère lors de l'expérience, mettre en œuvre l'expérience suivante :

Dans un tube à essai, placer une pointe de spatule d'hydrogénocarbonate de sodium.

Dans un deuxième tube à essai, verser de l'eau de chaux (en quantité suffisante pour que l'extrémité d'un tube à dégagement y soit immergée). Dans le tube contenant l'hydrogénocarbonate de sodium, verser environ 2 mL d'acide chlorhydrique et fixer le bouchon de façon à ce que le gaz formé arrive dans l'eau de chaux.

2) Noter vos observations et conclure quant à la nature du gaz formé (écrire sa formule chimique) L'eau de chaux se trouble en présence du gaz : il s'agit donc de dioxyde de carbone CO₂

3) En vous appuyant sur vos expériences et sur le document 2, faire l'inventaire des réactifs et des produits et en déduire l'équation de la réaction

Réactifs	Produits			
$NaHCO_{3(s)}$; $H_{(aq)}^+$	$H_2O_{(l)}$; $Na_{(aq)}^+$; $CO_{2(g)}$			

Equation de la	$NaHCO_{3(s)} + H_{(aq)}^+ \rightarrow CO_{2(g)} + H_2O_{(l)} + Na_{(aq)}^+$
réaction	(uq) $= (y)$ $= (uq)$

4. Etude quantitative

- 4) Pour chacune des 3 expériences, compléter le tableau ci-dessous :
- noter la couleur de la solution finale dans la fiole ;
- noter la présence ou l'absence de poudre dans la fiole
- noter la quantité de gaz produite (faible, moyenne, importante)
- Calculer la quantité de matière d'hydrogénocarbonate ajouté (Rappel : $n = \frac{m}{M}$).

		couleur de la solution finale	Présence de réactif $NaHCO_{3(s)}$	Quantité de gaz produit	Quantité de matière d'hydrogénocarbonate ajouté
Quantités (g ou mL)	1 ^{ère} expérience	Jaune	Non	faible	1,2×10 ⁻² mol
	2 ^{ème} expérience	Vert	Non	moyen	3,0×10 ⁻² mol
	3 ^{ème} expérience	bleu	Oui	moyen	4,8×10 ⁻² mol

- 5) Pour chacune des 3 expériences, et en utilisant les résultats du tableau précédent, compléter le tableau cidessous en précisant :
- Les réactifs introduits et leur quantité de matière respective
- Déduire de la couleur de la solution le réactif restant et le réactif limitant s'il y a en a un

	Réactifs				couleur de la solutio n finale	Réactif restant	Réactif limitant	
		Formule chimique	Quantité de matière	Formule chimique	Quantité de matière			
	1 ^{ère} expérience	$NaHCO_{3(s)}$	$1,2 \times 10^{-2}$	$H_{(aq)}^+$	3.0×10^{-2}	Jaune	$H_{(aq)}^+$	$NaHCO_{3(s)}$
Quantités (g ou mL)	2 ^{ème} expérience	$NaHCO_{3(s)}$	3.0×10^{-2}	$H_{(aq)}^+$	3.0×10^{-2}	Vert	aucun	Les deux
	3 ^{ème} expérience	$NaHCO_{3(s)}$	4.8×10^{-2}	$H_{(aq)}^+$	3.0×10^{-2}	bleu	$NaHCO_{3(s)}$	$H_{(aq)}^+$

- 6) Pour chacune des phrases suivantes choisir les bonnes réponses dans les phrases suivantes :
 - a) La transformation chimique s'est arrêtée lorsque l'un des **réactifs** / **produits** a été entièrement consommé.
- Pour l'expérience n°1 :
 - b) les ions H⁺_(aq) / le NaHCO_{3(s)} a disparu en premier <u>OU</u> les <u>2 réactifs</u> ont complètement disparu. C'est donc H⁺_(aq) / NaHCO_{3(s)} le réactif limitant <u>OU</u> les 2 réactifs sont limitants.
- Pour l'expérience n°2 :
 - c) les ions H⁺_(aq) / le NaHCO_{3(s)} a disparu en premier <u>OU</u> les <u>2 réactifs</u> ont complètement disparu. C'est donc H⁺_(aq) / NaHCO_{3(s)} le réactif limitant <u>OU</u> les <u>2 réactifs sont limitants</u>.
- Pour l'expérience n°3 :
 - d) les ions H⁺_(aq) / le NaHCO_{3(s)} a disparu en premier <u>OU</u> les <u>2 réactifs</u> ont complètement disparu. C'est donc H⁺_(aq) / NaHCO_{3(s)} le réactif limitant <u>OU</u> les 2 réactifs sont limitants.
 - e) Le volume de gaz produit augmente car la quantité initiale **d'ions** $H^{+}_{(aq)}$ / **de poudre NaHCO**_{3(s)} introduite est de plus en plus grande, alors que la quantité initiale **d'ions** $H^{+}_{(aq)}$ / **de poudre NaHCO**_{3(s)} ne change pas
 - f) Si on multipliait les expériences en augmentant encore la masse, le volume de gaz serait constant car c'est la quantité initiale **d'ions** H[†]_(aq) / de poudre NaHCO_{3(s)} qui limite la réaction.